Abstract

Samples of ambient PM2.5 were collected in the Qingdao harbor area between 21 March and May 25, 2016, and analyzed to investigate the compositions and sources of PM2.5 and to assess source-specific selected toxic element health risks to workers via a combination of positive matrix factorization (PMF) and health risk (HR) assessment models. The mean concentration of PM2.5 in harbor area was 48μgm-3 with organic matter (OM) dominating its mass. Zn and V concentrations were significantly higher than the other selected toxic elements. The hazard index (HI) and cancer risk (Ri) of all selected toxic elements were lower than the United States Environmental Protection Agency (USEPA) limits. There were no non-cancer and cancer risks for workers in harbor area. The contributions from industrial emissions (IE), ship emissions (SE), vehicle emissions (VE), and crustal dust and coal combustion (CDCC) to selected toxic elements were 39.0%, 12.8%, 24.0%, and 23.0%, respectively. The HI values of selected toxic elements from IE, CDCC, SE, and VE were 1.85×10-1, 7.08×10-2, 6.36×10-2, and 3.37×10-2, respectively; these are lower than the USEPA limits. The total cancer risk (Rt) value from selected toxic elements in CDCC was 2.04×10-7, followed by IE (6.40×10-8), SE (2.26×10-8), and VE (2.18×10-8). CDCC and IE were the likely sources of cancer risk in harbor area. The Bo Sea and coast were identified as the likely source areas for health risks from IE via potential source contribution function (PSCF) analysis based on the results of PMF-HR modelling. Although the source-specific health risks were below the recommended limit values, this work illustrates how toxic species in PM2.5 health risks can be associated with sources such that control measures could be undertaken if the risks warranted it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call