Abstract
Pelargonium sidoides is a member of the Geraniaceae family and it originates from the coastal regions of South Africa. In the last decades, Pelargonium sidoides root has been subjected to several surveys due to the assertion of its health benefits, such as the relief of symptoms of acute bronchitis, common cold and acute rhinosinusitis. Many studies have been conducted to reveal its naturally occurring bioactive chemicals, yet no wide-scope chemical characterisation strategies have been done using mass spectrometry. This research aimed to comprehensively characterise the chemical profile of Pelargonium sidoides root via high-resolution mass spectrometry. The Pelargonium sidoides root was extracted by a mixture of methanol: water in the proportion of 80:20. The extraction procedure included vortexing, shaking as well as the use of an ultrasound sonication bath under 40°C. After centrifugation, the supernatant was evaporated to dryness. The dry residue was reconstituted with a mixture of methanol/water (50:50, v/v), filtered and injected into an ultra-high-pressure liquid chromatography-quadruple time-of-flight mass spectrometer. Overall, 33 compounds were identified in the root using suspect and non-target screening. These compounds were originated from different classes of compounds such as amino acids, phenolic acids, α-hydroxy-acids, vitamins, polyphenols, flavonoids, coumarins, coumarins glucosides, coumarin sulphates and nucleotides. Quantitative results were provided for the identified compounds, where their reference standards were available. Some important compounds were elucidated, belonging to different classes of compounds such as antioxidants (coumarins and phenolic compounds), amino acids, nucleotides and vitamins revealing the importance of the bioactive content of this root.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.