Abstract

When a swift ion is slowed down through a plastic detector it creates a latent track. In nuclear track detectors, this latent track can be specifically etched by an appropriate chemical solution. This enlargement process is due to a higher etch velocity (VT) along the ion's path than in the non-damaged part of the detector. The etched track velocity is definitely linked to the damage created by the incoming ion in the detector material. A relationship between the physical parameters of the energy deposition and the variation in this etched track velocity with the ion energy cannot easily be explained. We present here our study on the chemical damage created by several ions in a cellulose nitrate type detector and our first attempt to simulate them by the use of the hit theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.