Abstract

Scattering of electrons is affected by the distribution of valence electrons that participate in chemical bonding and thus change the electrostatic shielding of the nucleus. This effect is particularly significant for low-angle scattering. Thus, while chemical bonding effects are difficult to measure with small-unit cell materials, they can be substantial in the study of proteins by electron crystallography. This work investigates the magnitude of chemical bonding effects for a representative collection of protein fragments and a model ligand for nucleotide-binding proteins within the resolution range generally used in determining protein structures by electron crystallography. Electrostatic potentials were calculated by ab initio methods for both the test molecules and for superpositions of their free atoms. Differences in scattering amplitudes can be well over 10% in the resolution range below 5 A and are especially large in the case of ionized side chains and ligands. We conclude that the use of molecule-based scattering factors can provide a much more accurate representation of the low-resolution data obtained in electron crystallographic studies. The comparison of neutral and ionic structure factors at resolutions below 5 A can also provide a sensitive determination of charge states, important for biological function, that is not accessible from X-ray crystallographic measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.