Abstract

Time-resolved X-ray photoelectron spectroscopy (TR-XPS) is used in a simulation study to monitor the excited state intramolecular proton transfer between oxygen and nitrogen atoms in 2-(iminomethyl)phenol. Real-time monitoring of the chemical bond breaking and forming processes is obtained through the time evolution of excited-state chemical shifts. By employing individual atomic probes of the proton donor and acceptor atoms, we predict distinct signals with opposite chemical shifts of the donor and acceptor groups during proton transfer. Details of the ultrafast bond breaking and forming dynamics are revealed by extending the classical electron spectroscopy chemical analysis to real time. Through a comparison with simulated time-resolved photoelectron spectroscopy at the valence level, the distinct advantage of TR-XPS is demonstrated thanks to its atom specificity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.