Abstract

Surface molecules can transition from physisorption through weak van der Waals forces to a strongly bound chemisorption state by overcoming an energy barrier. We show that a carbon monoxide (CO) molecule adsorbed to the tip of an atomic force microscope enables a controlled observation of bond formation, including its potential transition from physisorption to chemisorption. During imaging of copper (Cu) and iron (Fe) adatoms on a Cu(111) surface, the CO was not chemically inert but transited through a physisorbed local energy minimum into a chemisorbed global minimum, and an energy barrier was seen for the Fe adatom. Density functional theory reveals that the transition occurs through a hybridization of the electronic states of the CO molecule mainly with s-, p z -, and d z 2-type states of the Fe and Cu adatoms, leading to chemical bonding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.