Abstract

Carbon migration in the tungsten coating layer exposed to JT-60U divertor plasmas has been investigated by analysis of chemical binding states of the carbon atoms. More than 1% of carbon atoms were accumulated as graphitic carbon, amorphous carbon and/or carbon-deuterium bonds. This concentration was more than five orders of magnitude higher than the solubility of carbon atoms in tungsten lattice. Up to 20% of ditungsten carbide (W2C) was also formed in the tungsten coating layer. These findings suggested the following carbon migration mechanism in the tungsten coating layer. The incident carbon migrates along grain boundaries and defects such as pores over the depth which is evaluated by the carbon diffusion coefficient in tungsten lattice. The carbon atoms trapped on grain surface penetrate and diffuse in the grains. The carbon atoms exceeded the solubility of carbon atoms in tungsten lattice chemically bind to tungsten atoms and form W2C. c

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call