Abstract

Cu(In,Ga)Se2 (CIGSe) thin‐film solar cells are a commercial photovoltaic technology that provides sustainable power. Herein, the formation of Zn1−xSnxOy (ZTO) thin films is studied as Cd‐free buffer layer by chemical bath deposition (CBD) suitable for CIGSe solar cell devices. ZTO films are obtained by CBD onto soda lime glass, by modifying a reported procedure otherwise leading to columnar ZnO thin films. These ZTO films show a flatter morphology compared to the reference ZnO due to inhibition of the columnar growth. In addition, a nontrivial increase in the bandgap is observed by enhancing Sn concentration. When a concentration of 20% [Sn]/([Sn] + [Zn]) (where [Sn] and [Zn] are the molar concentrations of Sn and Zn, respectively) is employed in the chemical bath, the resulting buffer layer allows the CIGSe solar cell to achieve similar performance as with a CdS buffer layer (average efficiency of (11 ± 2)%), yielding a maximum efficiency of 10.4%, with an average of (9 ± 2)%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.