Abstract

Laser processing techniques have been widely used for high speed, high accuracy subtractive manufacturing such as cutting, drilling, milling and micro-machining. Most of these processes are based on thermal mechanisms. For the machining of metallic materials, a layer of recast and heat affected zone is normally present on the laser-machined components. This paper reports a novel technique that aims to minimize such heat affects and at the same time to improve the material removal efficiency. A relatively environmentally friendly salt solution, in contact with the beam-material interaction point, was used in this study to enable material removal to be based on laser activated thermal-chemical mechanism. It has been shown that, not only the recast layer can be removed during the processing, the material removal rate can be increased up to 300% for 316 stainless steel work piece.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call