Abstract

To maintain the functions of living organisms, cells have developed complex gene regulatory networks. Transcription factors have a central role in spatiotemporal control of gene expression and this has motivated us to develop artificial transcription factors that mimic their function. We found that three functions could be mimicked by applying our chemical approaches: i) efficient delivery into organelles that contain target DNA, ii) specific DNA binding to the target genomic region, and iii) regulation of gene expression by interaction with other transcription coregulators. We chose pyrrole-imidazole polyamides (PIPs), sequence-selective DNA binding molecules, as DNA binding domains, and have achieved each of the required functions by introducing other functional moieties. The developed artificial transcription factors have potential as chemical tools that can be used to artificially modulate gene expression to enable cell fate control and to correct abnormal gene regulation for therapeutic purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.