Abstract

Shortwave direct aerosol radiative forcing (DARF) at the surface as well as aerosol optical depth (AOD) were estimated and chemically apportioned on the basis of ground-based aerosol and radiation measurements at the Gosan super-site in Korea during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) in April 2001. An aerosol optical model and a radiative transfer model (RTM) were employed to calculate the aerosol extinction coefficient and radiative flux at the surface, respectively. The calculated scattering and absorption coefficients for D p<10 μm aerosols agreed well with measured scattering and absorption coefficients with root mean square errors (RMSEs) of 23.6 and 3.0 Mm −1, respectively. The modeled direct and diffuse irradiances at the surface were also in good agreement with the measured direct and diffuse irradiances. In this study we found that the 17-day mean aerosol radiative forcing of −38.3 W m −2 at the surface is attributable to mineral dust (45.7%), water-soluble components (sum of sulfate, nitrate, ammonium, and water-soluble organic carbon (WSOC)) (26.8%), and elemental carbon (EC) (26.4%). However, sea salt does not play a major role. For the cases of Asian dust and smoke episodic events on 26 April 2001, a diurnal averaged forcing of −36.2 W m −2 was contributed by mineral dust (−18.8 W m −2), EC (−6.7 W m −2), and water-soluble components (−10.7 W m −2). The results of this study suggest that water-soluble and EC components as well as a mineral dust component are responsible for a large portion of the aerosol radiative forcing at the surface in the continental outflow region of East Asia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.