Abstract

Combined petrographical, mineralogical, geochemical and stable isotope analyses were conducted on an actively forming Egerszalók Travertine mound to determine the factors that govern carbonate precipitation and thus influence the use of travertines in paleoclimate reconstruction. Stable isotope analyses of oxygen, carbon and hydrogen demonstrate both biological and abiological factors to control travertine deposition. Processes of morphology-related outgassing had major effects upon isotopic composition. Continuous CO 2 degassing and temperature change of the thermal water between the spring orifice and distal parts of the system, caused stable carbon and oxygen isotope compositions of the precipitating travertines to increase (from + 2.7 to + 4.3‰ relative to V-PDB and from + 10.5 to + 14.7‰ relative to V-SMOW, respectively). The travertines at the spring orifice ( T ∼ 67 °C) are composed of almost pure calcite with a δ 13C value of + 2.7‰ (relative to V-PDB) enabling classification as intermediate between thermometeogene and thermogene. In lower temperature water, away from the spring orifice, various amounts of aragonite (5–35%) with higher Sr concentrations precipitate from solution. This phenomenon is exceptional in hot spring carbonate deposits and could be explained by fast carbonate precipitation due to the morphology-related outgassing. Oxygen and hydrogen isotope measurements of the thermal water confirmed evaporation to be causing limited kinetic isotope fractionation. However, δ 18O values of the travertine do show isotope shifts away from the equilibrium fractionation curve, which is most probably related to the rapid calcite precipitation and transportation along the flow path. Our data closely follow the temperature–Δ 18O calcite–water relationship observed for other travertine localities. This is slightly displaced from the experimental curve and determines an empirical ‘travertine curve’. Our study shows that this shift may result in an approximately 8 °C difference in paleotemperature calculations depending upon which fractionation curve is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.