Abstract

Aluminate perovskite with a 75% simulator of actinide-REE (Nd, Sm, Ce) fraction of high-level radioactive wastes (HLW) from reprocessing of spent nuclear fuel (SNF) has been synthesized and studied. The radiation stability of perovskite in the process of 244Cm decay (T1/2 = 18 yr) was investigated. Its structure has been amorphized at accumulated dose of 2.3 × 1018 α-decays/g, or 0.26 displacements per atom (dpa). The critical temperature above which amorphization does not occur at any dose is estimated to be 500°C. Radiation resistance of aluminate perovskite is close to previously studied titanate pyrochlore and ferrite garnet. The stability of perovskite in water before and after amorphization has been studied as well. The leach rate of Cm by water (90°C) from crystalline perovskite in runs 3–14 days long was 10−2–10−3 g/m2. This value is close to the stability of titanate pyrochlore and aluminate garnet. The intensity of element leaching from perovskite after amorphization of its structure increases 10–100 times and thus is higher than for other previously studied actinide phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.