Abstract

Meteoric 10Be and 7Be produced in the atmosphere from high-energy spallation reactions are deposited onto the Earth's surface through wet and dry deposition and are sorbed onto the surfaces of particles. On land, the sorbed concentrations scale with the residence time of sediments in a landscape–offset by slow (10Be) and fast (7Be) radioactive decay. Additionally, the amount of native 9Be, leached from minerals, correlates with the chemical weathering of soils. However, previous work has shown that chemical and physical properties of soils and river sediments affects sorption of beryllium. Therefore, the magnitude of sorbed beryllium concentrations may be more representative of the sorption capacity of the system rather than its erosional or weathering history.Although previous work has examined the physical and chemical properties of soil that influence beryllium sorption, these studies either lack consensus or exclude potentially important variables. In this work, we provide a thorough examination of variables previously reported to have influence on beryllium chemistry as well as new variables such as nitrogen, phosphorus and sulfur concentrations in order to determine which factors best predict beryllium sorption. We selected two soil endmembers with differing compositions, separated them into different size fractions, and characterized the surface area, cation exchange capacity (CEC), mineralogy, sulfur, carbon, nitrogen and phosphorus concentrations. We determined that the inverse percent abundance of quartz and the CEC best predict beryllium sorption potential in these soils. By deriving a model that relates these two variables to the percent sorbed beryllium, we were able to predict the sorption capacity of our system and reduced the error in sorbed beryllium amounts due to differences in soil properties by about 42%. From these results, we provide insight as to why there is inconsistency in the literature with regards to the physio-chemical controls on the environmental behavior of beryllium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call