Abstract
Fluorinated photodefinable polymers are widely employed as re-distribution layers in wafer-level packaging to produce microelectronic devices because of their suitable low dielectric constant and moisture absorption, high mechanical toughness, thermal conductivity and stability, and chemical inertness. Typically, fluorinated photodefinable polybenzoxazoles (F-PBOs) are the most used in this field. In the present work, we investigated by atomic force microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy the morphological and chemical modifications induced by Ar plasma treatments on F-PBO films. This process, used to remove surface contaminant species, as well as increase the polymeric surface roughness, to improve the adhesion to the other components during electronic packaging, is a crucial step during the manufacturing of some microelectronic devices. We found that argon plasma treatments determine the wanted drastic increase of the polymer surface roughness but, in the presence of a patterned silver layer on F-PBO, needed for the fabrication of electric contacts in microelectronic devices, also induce some unwanted formation of silver fluoride species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.