Abstract

Sodium silicate is commonly used for activating alumina silicates to produce alkali-activated binders that can compete with conventional Portland cement in concrete. However, the cost and emissions related to activators can hinder the use of alkali-activated materials in the industry. The novel, waste-based activators have been developed in the last years, using Si-rich waste streams. Processing waste glass cullet not only reduces the glass landfill disposal but also allows the production of sodium silicate for alkali activation. In this article, the chemical and microstructural properties of neat fly ash and blended 60 fly ash/40 slag pastes activated by sodium silicate produced from glass cullet were studied and compared to equivalent ones activated by commercially available sodium silicate and sodium hydroxide solutions. Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) were used to determine the microstructure and composition of the gel phase. Findings have confirmed that pastes activated by the processed waste glass showed chemical and microstructural properties comparable to pastes produced with commercially available activators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.