Abstract

In this paper, we present some specific chemical and magnetic order results obtained on bimetallic FeRh nanoparticles prepared under non-equilibrium conditions using mass-selected Low Energy Cluster Beam Deposition. Clusters around 7 nm incident diameter are in situ sandwiched between amorphous carbon films before transfer in air, with different surface coverage (from nearly isolated particles to percolating 2D films) in order to artificially increase diameters of the nanoparticles (NPs) by coalescence. On such FeRh@C samples, we observe different NPs morphologies and magnetic responses after UHV thermal treatments. By transmission electron microscopy (TEM), we show that after moderate annealing, nanoalloys evolved from a metastable structure towards the equilibrium CsCl-type (B2) chemically ordered phase with a more spherical shape. While from Superconducting Quantum Interference Device (SQUID) magnetometry measurements on 700 °C-annealed FeRh@C samples, we clearly evidence huge magnetization enhancement for such B2 nanoalloys with robust ferromagnetic (FM) signature even at very low temperature unlike their bulk counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.