Abstract

Lakes in the limestone region of Jamaica exhibit a range of chemical characteristics that reflect varying inputs from precipitation, surface runoff and groundwater, together with the subsequent evolution of the water within the limnic environment. Detailed spatial and temporal sampling was conducted on one lake, Wallywash Great Pond. Chemical data, together with D/H, 18O/16O, 13C/12C and 87Sr/86Sr ratios confirm that the karstic spring waters entering the lake evolve chemically through degassing, mixing with rainfall and runoff, biogenic decalcification (resulting mainly from bicarbonate assimilation by the high biomass of submerged macrophytes), and evaporation. Modern carbonate sedimentation in Wallywash Great Pond is largely of high-Mg calcite. This is consistent with Mg/Ca molar ratios >2 within much of the lake. However, aragonite forms on the adaxial leaf surfaces of Potamogeton spp. This may be explained either as a result of locally elevated Mg concentrations or a high degree of supersaturation favouring very rapid carbonate precipitation. Two small lakes to the north of Wallywash Great Pond show minor influence of the Na-Cl dominated coastal aquifer, suggesting that coastal lakes are sensitive to variations in the boundary between fresh and brackish groundwater caused by changes in climate or sea level. Their 13C/12C ratios are strongly influenced by biogenic CO2 derived from plant respiration or decay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.