Abstract

In the last two decades, awareness grew on the matter of the impact of environment on human health. Contaminants sorbed onto soil and settled dust can be ingested and thus represent a hazard, particularly to young children, who play on the ground and bring their hands and objects to their mouth. Metal(loid)s and polycyclic aromatic hydrocarbons (PAHs) are of concern as they are both carcinogenic to humans and ubiquitous in outdoor environments. The present study aims to assess the total and bioaccessible fractions of PAHs and metal(loid)s present in settled dust of four preschools located in industrial, urban, and suburban areas. On the one hand, children's incremental life cancer risks (ILCR) were calculated according to ingestion pathway. On the other hand, the genotoxicities of the bioaccessible dust-bonded contaminants were determined on gastric cells. PAH concentrations ranged from 50.9 to 2267.3 ng/g, and the bioaccessible fraction represented 10.7% of the total in average. Metal(loid) concentration ranged from 12,430 to 38,941 µg/g, and the mean bioaccessibility was of 40.1%. Cancer risk ranged from 2.8.105 to 8.6.105, indicating that there is a potential cancer risk for children linked to the ingestion of settled dust. The inorganic bioaccessible fraction induced little DNA (< 20%TailDNA) and chromosomal damages (30% increase in micronuclei), whereas the organic bioaccessible fraction induced higher DNA (17-63%TailDNA) and chromosomal damages (88% increase in micronuclei). Such experimental approach needs to be deepen, as a tool complementary to cancer risk calculation, since the latter only lays on a set of targeted contaminants with known toxicity values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call