Abstract

Lithium has been inserted into the spinel Li4Ti5O12 by both chemical and electrochemical methods. The cation distribution in the lithiated phases has been analyzed by 6,7Li NMR, Raman spectroscopy, and X-ray diffraction, and the distribution in the chemically inserted compound has been analyzed additionally by neutron diffraction. A refinement of structural parameters has been carried out by applying the Rietveld method to the neutron diffraction pattern. It is shown that the two insertion methods are based on different mechanisms. Chemically inserted lithium ions are trapped in the (48f) sites of the spinel structure from which they cannot be extracted by electrochemical means. In contrast to the electrochemical Li-insertion, which is accompanied by a spinel to rocksalt phase transition, no such structural change is found for chemical insertion. The consequences of the two different mechanisms for the reversibility of the insertion process are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.