Abstract

The chemical and electrochemical insertion of lithium into the spinel structure of CuCr(2)Se(4) was studied and the chemical reaction pathway was followed by ex situ X-ray diffraction on samples with different Li contents. The electrochemical reaction was investigated by in situ X-ray diffraction and in situ scanning electron microscopy. In the early steps of chemical intercalation, two phases with a different Li content coexist and Cu is extruded from the host material. After 4 days of Li intercalation, a conversion reaction is observed. The overall Li uptake is 8 Li ions per formula unit. The structural behaviour of the two intercalated phases at the early stages of intercalation is totally different. For one phase a strong expansion of the a-axis is observed while for the other phase it is only slightly affected by Li uptake. A three-step mechanism was found consisting of reduction of Se(-) followed by a Cu-Li exchange and finally a complete reduction of Cr(3+) to the metallic state accompanied by the formation of Li(2)Se. The discharge capacity of the first cycle amounts to 530 mAh g(-1) and drops to about 380 mAh g(-1) in the fifth cycle. In in situ SEM images the occurrence of Cu whiskers that partially grow out of the crystallites can be observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call