Abstract

A facile strategy for chemical and electrochemical grafting of polythiophene onto poly(vinyl chloride) (PVC) is reported. For this purpose, a thiophene-functionalized PVC macromonomer (ThPVCM) was synthesized using a Kumada cross-coupling reaction. The synthesis of macromonomer was verified by means of Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopes. The graft copolymerization of thiophene monomers onto ThPVCM was initiated by oxidized thiophene groups coupled onto PVC backbone after addition of ferric chloride (FeCl3) via oxidation polymerization method. Moreover, the electrochemical graft copolymerization of thiophene onto ThPVCM was performed via constant potential electrolysis in the acetonitrile (ACN)–tetraethylammonium tetrafluoroborate (TEAFB) solvent–electrolyte couple. The PVC-g-PTh obtained was characterized by means of FTIR spectroscopy and gel permeation chromatography (GPC), and its electroactivity behavior was verified under cyclic voltammetric conditions. Moreover, thermal behavior of the synthesized polymer was investigated by means of thermogravimetric analysis (TGA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.