Abstract
The processes of electrical charge accumulation and dissipation in dielectric materials are critical to spacecraft construction and operational anomaly resolution. Electrical conductivity, and therefore surface potential, of radiation-damaged materials undergoes unpredicted changes while on orbit. The space environment causes fundamental modifications in the chemical structure of spacecraft materials by breaking intermolecular bonds and creating free radicals that act as space charge traps. Over time, free radicals react with each other and the material recovers. The rates of free radical formation and loss determine the dynamics of the conductivity of spacecraft materials. Lack of knowledge about dynamic aging is a major impediment to accurate modeling of spacecraft behavior over its mission life. This paper presents an investigation of the chemical and physical properties of polyimide (PI) films during and after irradiation with high-energy (90 keV) electrons. The constant voltage method was utilized to monitor material conductivity during the recovery process. To quantify the concentration of free radicals within the irradiated material, the electron paramagnetic resonance technique was used. Changes in the infrared (IR) absorption profile of irradiated materials during the recovery process were identified using the directional-hemispherical reflectance technique coupled with the Fourier transform IR spectroscopy. This physical/chemical collaboration allowed correlation of chemical changes in PI with the dynamic nature of spacecraft material aging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.