Abstract

This study deals with laboratory-scale investigations to evaluate the efficiency of different chemical leaching agents (i.e. sulfuric, oxalic and citric acids) and bioleaching processes (based on different acidophilic bacterial strains) on the mobilisation of metals/semi-metals in contaminated harbour sediments. A simplified life-cycle assessment was also performed in order to compare the investigated strategies in terms of their main environmental impacts. The different chemical leaching agents provided different extraction efficiencies of toxic metals. Among the investigated chemical leaching agents, citric acid 0.5 M and sulfuric acid pH 2 were the most effective, with average mobilisation efficiencies of ∼30% for Zn and Cr, ∼40% for Ni, and 35 and 58% for As, under citric and sulfuric acid, respectively. Similar higher extraction efficiencies of metals were also observed in bioleaching experiments with the presence of ferrous iron. The life-cycle assessment revealed that treatments based on diluted sulfuric acid are a better option considering both resource requirements and emissions, leading to lower environmental impacts compared with the other treatment strategies. Overall results from this study provide new insights for the definition of the most efficient and environmentally friendly strategies to be used for dredged sediments contaminated with metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.