Abstract

Digital-microfluidic lab-on-a chip (LoC) technology offers a platform for developing diagnostic applications with the advantages of portability, sample and reagent volume reduction, faster analysis, increased automation, low power consumption, compatibility with mass manufacturing, and high throughput. In addition to diagnostics, digital microfluidics is finding use in airborne chemical detection, DNA sequencing by synthesis, and tissue engineering. In this article, we review efforts to develop various LoC applications using electrowetting-based digital microfluidics. We describe these applications, their implementation, and associated design issues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call