Abstract

Enzymatic processes are widely used in food industry, pharmacy, cosmetic and household chemistry, and medicine. However, the common and efficient application of the biological catalysts is limited by a number of factors that influence enzymes activity. One of the most frequent methods to improve the biocatalysts' properties is immobilization. This chapter presents a recent overview of our attempts to obtain the perfect biocatalytic system. The experimental approach, proposed in this chapter, includes the critical points like: the choice of adequate immobilization method, most suitable carrier, determination of enzyme kinetic parameters, stability, and toxicity of obtained systems. As carbon materials including graphene-derived materials offer unique properties and a plenty of different modifications, these parameters seem to be of decisive importance to understand chemistry of complex systems. Consideration of all the mentioned requirements lead us to the conclusion that graphene oxide could be the best candidate for support in perfect biocatalytic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.