Abstract

Current solid oxide fuel cell research aims for the reduction of operating temperatures while maintaining power output to reduce the cost of operation. A promising strategy for achieving this goal is to replace common microcrystalline yttria-stabilized zirconia (YSZ) electrolytes of 10−200 μm thickness with nanocrystalline gadolinia-doped ceria electrolytes (CGO) of 100−500 nm thickness deposited by spray pyrolysis. While decreasing the electrolyte thickness, we expect ohmic losses of the fuel cell to decrease linearly and can realize lower operation temperatures at equal efficiency. In this study, the chemical homogeneity of as-deposited and annealed Ce0.8Gd0.2O1.9-x thin films deposited by spray pyrolysis at 350 °C and annealed at 1000 °C were investigated. The chemical composition of the gadolinia-doped ceria films was studied by X-ray photoelectron spectroscopy and Ar+ sputtering as a function of film depth. After the topmost layer was removed by Ar+ sputtering, the thin films showed a surprisingly homogeneous dopant concentration of 23.4 ± 0.6 at % gadolinia in ceria, independent of the film depth. However, spray-pyrolysis-related residues of the precursors (i.e., chlorine from the precursor salt, carbon from the pyrolysis solvents, and water) could be found at unexpected depths in the film and even after annealing at temperatures as high as 1000 °C. The pyrolytic decomposition of the spray pyrolysis thin films is not completely finished after deposition. Changes in the chemical composition may be present during solid oxide fuel cell operation of CGO electrolytes at 600−1000 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.