Abstract
Chemical address tags can be defined as specific structural features shared by a set of bioimaging probes having a predictable influence on cell-associated visual signals obtained from these probes. Here, using a large image dataset acquired with a high content screening instrument, machine vision and cheminformatics analysis have been applied to reveal chemical address tags. With a combinatorial library of fluorescent molecules, fluorescence signal intensity, spectral, and spatial features characterizing each one of the probes' visual signals were extracted from images acquired with the three different excitation and emission channels of the imaging instrument. With multivariate regression, the additive contribution from each one of the different building blocks of the bioimaging probes toward each measured, cell-associated image-based feature was calculated. In this manner, variations in the chemical features of the molecules were associated with the resulting staining patterns, facilitating quantitative, objective analysis of chemical address tags. Hierarchical clustering and paired image-cheminformatics analysis revealed key structure-property relationships amongst many building blocks of the fluorescent molecules. The results point to different chemical modifications of the bioimaging probes that can exert similar (or different) effects on the probes' visual signals. Inspection of the clustered structures suggests intramolecular charge migration or partial charge distribution as potential mechanistic determinants of chemical address tag behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.