Abstract

In the in vivo anesthetized adult cat model, multiple patterns of inspiratory motor discharge have been recorded in response to chemical stimulation and focal hypoxia of the pre-Bötzinger complex (pre-BötC), suggesting that this region may participate in the generation of complex respiratory dynamics. The complexity of a signal can be quantified using approximate entropy (ApEn) and multiscale entropy (MSEn) methods, both of which measure the regularity (orderliness) in a time series, with the latter method taking into consideration temporal fluctuations in the underlying dynamics. The current investigation was undertaken to examine the effects of pre-BötC-induced excitation of phasic phrenic nerve discharge, which is characterized by high-amplitude, rapid-rate-of-rise, short-duration bursts, on the complexity of the central inspiratory neural controller in the vagotomized, chloralose-anesthetized adult cat model. To assess inspiratory neural network complexity, we calculated the ApEn and MSEn of phrenic nerve bursts during eupneic (basal) discharge and during pre-BötC-induced excitation of phasic inspiratory bursts. Chemical stimulation of the pre-BötC using DL-homocysteic acid (DLH; 10 mM; 10-20 nl; n=10) significantly reduced the ApEn from 0.982+/-0.066 (mean+/-SE) to 0.664+/-0.067 (P<0.001) followed by recovery ( approximately 1-2 min after DLH) of the ApEn to 1.014+/-0.067; a slightly enhanced magnitude reduction in MSEn was observed. Focal pre-BötC hypoxia (induced by sodium cyanide; NaCN; 1 mM; 20 nl; n=2) also elicited a reduction in both ApEn and MSEn, similar to those observed for the DLH-induced response. These observations demonstrate that activation of the pre-BötC reduces inspiratory network complexity, suggesting a role for the pre-BötC in regulation of complex respiratory dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call