Abstract

Chemical accidents have threatened drinking water safety and aquatic systems when hazardous chemicals flow into inland waterbodies through pipelines in industrial complexes. In this study, a forecasting system was developed for the prevention of drinking water resource pollution by considering chemical transport/fate through both pipelines and river channels. To this end, we coupled a pipe network model (Storm Water Management Model) with a calibrated hydrodynamic model (Environmental Fluid Dynamics Code). In addition, we investigated whether chemical transport through pipelines would make a difference in chemical concentration predictions. For both pipelines and river channels, the results showed lower peak concentrations than those without pipelines, whereas the time of peak concentration did not change significantly. When chemicals were transported with both pipelines and river channels, the peak concentrations were 25.81% and 41.91% lower than those of chemicals carried directly into the Han and Geum Rivers without the pipeline transport. Further, our system is automated from scenario generation to analysis and usage is straightforward, with a simple input of accident information. The results of this study can be utilized to establish a safe water supply system and preliminary countermeasures against accidental water pollution in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.