Abstract

Abstract We present a chemical abundance analysis of the faint halo metal-poor main-sequence star J0023+0307, with [Fe/H] < −6.3, based on a high-resolution (R ∼ 35,000) Magellan/MIKE spectrum. The star was originally found to have [Fe/H] < −6.6 based on a Ca ii K measurement in an R ∼ 2500 spectrum. No iron lines could be detected in our MIKE spectrum. Spectral lines of Li, C, Na, Mg, Al, Si, and Ca were detected. The Li abundance is close to the Spite Plateau, (Li) = 1.7, not unlike that of other metal-poor stars, although in stark contrast to the extremely low value found, e.g., in HE 1327–2326 at a similar [Fe/H] value. The carbon G-band is detected and indicates strong C-enhancement, as is typical for stars with low Fe abundances. Elements from Na through Si show a strong odd–even effect, and J0023+0307 displays the second-lowest known [Ca/H] abundance. Overall, the abundance pattern of J0023+0307 suggests that it is a second-generation star that formed from gas enriched by a massive Population III first star exploding as a fallback supernova. The inferred dilution mass of the ejecta is 105±0.5 M ⊙ of hydrogen, strongly suggesting J0023+0307 formed in a recollapsed minihalo. J0023+0307 is likely very old because it has a very eccentric orbit with a pericenter in the Galactic bulge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.