Abstract

High-throughput experimentation (HTE) methods are central to modern medicinal chemistry. While many HTE approaches to C-N and Csp2 -Csp2 bonds are available, options for Csp2 -Csp3 bonds are limited. We report here how the adaptation of nickel-catalyzed cross-electrophile coupling of aryl bromides with alkyl halides to HTE is enabled by AbbVie ChemBeads technology. By using this approach, we were able to quickly map out the reactivity space at a global level with a challenging array of 3×222 micromolar reactions. The observed hit rate (56 %) is competitive with other often-used HTE reactions and the results are scalable. A key to this level of success was the finding that bipyridine 6-carboxamidine (BpyCam), a ligand that had not previously been shown to be optimal in any reaction, is as general as the best-known ligands with complementary reactivity. Such "cryptic" catalysts may be common and modern HTE methods should facilitate the process of finding these catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.