Abstract

Myocardial ischemia results in an increase in intracellular sodium concentration ([Na]i), which may lead to cellular injury via cellular swelling and calcium overload. Because protein kinase C (PKC) has been shown to reduce Na-K-ATPase activity, we postulated that pharmacological inhibition of PKC would directly increase Na-K-ATPase activity, reduce [Na]i during ischemia, and provide protection from ischemic injury. Isolated rat hearts were subjected to 30 min of global ischemia with and without the specific PKC inhibitor chelerythrine. Intracellular pH, ATP, and [Na]i were assessed using 31P and 23Na NMR spectroscopy, whereas Na-K-ATPase and PKC activity were determined using biochemical assays. Na/H exchanger activity was determined using the ammonium prepulse technique under nonischemic conditions. Chelerythrine increased Na-K-ATPase activity (13.76 +/- 0.89 vs. 10.89 +/- 0.80 mg ADP. h(-1). mg protein(-1); P = 0.01), reduced PKC activity in both the membrane and cytosolic fractions (39% and 28% of control, respectively), and reduced creatine kinase release on reperfusion (48 +/- 5 IU/g dry wt vs. 689 +/- 63 IU/g dry wt; P = 0.008). The rise in [Na](i) during ischemia was significantly reduced in hearts treated with chelerythrine (peak [Na](i) chelerythrine: 21.5 +/- 1.2 mM; control: 31.9 +/- 1.2 mM; P < 0.0001), without an effect on either acidosis (nadir pH 6.16 +/- 0.05 for chelerythrine vs. 6.08 +/- 0.04 for control), the rate of ATP depletion or Na/H exchanger activity. These data support the hypothesis that pharmacological inhibition of PKC before ischemia induces cardioprotection by reducing intracellular sodium overload via an increase in Na-K-ATPase activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.