Abstract

Chelators have proven to be effective extractants in soil washing and represent a suitable remediation technology for potentially toxic elements (PTEs) from contaminated sites. In this paper, the extraction of lead (Pb), copper (Cu), and zinc (Zn) from contaminated real and reference soils using both biodegradable (EDDS and HIDS) and persistent (EDTA and DTPA) chelators was investigated. Different metal–chelator complex formation constants, pH, extraction temperature, and mechanochemical energy were tested. The PTEs were extracted at a relatively higher rate under acidic to neutral conditions (pH 5 and 7), with the greatest extraction being observed at pH 5. The metal extraction efficiencies of the chelators for the real sample at pH 5 were as follows: Pb – EDTA > DTPA > EDDS > HIDS; Cu – DTPA > EDTA > EDDS > HIDS; and Zn – DTPA > EDTA > HIDS > EDDS. The data suggested that EDDS was more effective than HIDS for Cu and Zn extraction in neutral to slightly alkaline solutions, as well as at raised temperature. Furthermore, EDTA washing using mechanochemical agitation was found to enhance the removal efficiency of Cu and Zn. Sequential chemical extraction showed that the apparent metal mobilities were reduced by soil washing. EDTA and DTPA appeared to offer greater potential than the biodegradable chelators in extracting metals from the relatively mobile carbonate- and Fe–Mn oxide-bound fractions. The residual fraction of Pb displayed considerable stability (≥70%), and was not entirely amenable under washing treatments, and hence could be considered non-bioavailable and non-toxic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.