Abstract

We previously reported that the functional deletion of p21, a cyclin-dependent kinase inhibitor, in mice attenuated renal cell senescence in streptozotocin (STZ)-induced type 1 diabetic mice. In the present study, we investigated the effect of iron chelation on renal cell senescence and inflammation in the type 1 diabetic kidney. STZ-treated mice showed increase in iron accumulation, tubular cell senescence and macrophage infiltration at week 28 in the kidney. Administering deferasirox, which removes only dietary iron, significantly attenuated iron accumulation in proximal tubules and the number of infiltrating F4/80-positive cells without effecting blood glucose, hematocrit or hemoglobin levels. In contrast however, deferasirox did not influence renal cell senescence. The lack of p21 decreased the renal tubular iron accumulation and did not change tubular cell senescence. Interestingly, the STZ-treated animals showed an increase in p16, another cyclin-dependent kinase inhibitor. The results suggest that type 1 diabetes increases renal tubular iron accumulation and macrophage infiltration through a p21-dependent mechanism, and that the chelation of dietary iron attenuates these responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.