Abstract

Alanylaspartic dipeptide (AlaAsp) and zinc(II)-flavonol complex could represent a metal-binding site in proteins and a metal-ion releasing agent, respectively. Chelation of zinc(II) by either AlaAsp or flavonol ligands in aqueous solution has been examined using DFT methods with polarizable continuum model (PCM/DFT). Coordination geometry, complexation stoichiometry, coordination bond strength, preferable metal-binding site on ligands and effect of water coordination on the stability of complexes have been addressed. In several cases, the long-range corrected density functional CAM-B3LYP allows the most accurate prediction of both structural and spectroscopic data. The preferential transfer of flavonol-chelated zinc(II) to AlaAsp under solvation is attainable through the ligand-exchange reaction. The energy barrier of such reaction is significantly dependent on the degree of hydrogen bonding within the transition state. In summary, either hydroxylation or methoxylation at particular positions on the 3-hydroxyflavone backbone significantly affects the reactivity of flavonol chelates in the metal-ion transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call