Abstract

Abstract A special attention is currently focused on the recovery of Au, Ag, Pt, Pd and Rh from both primary and secondary sources. From the wide range of sorbents that have been used in this respect, the required selectivity is proved only by the chelating polymers containing donor N, O and S atoms in their functional groups. This work presents the recent published researches on this topic, pointing out the capabilities of chelating sorbents based on organic synthetic polymers for a sustainable development. The chelating sorbents are differentiated and reviewed according to their synthesis strategy and compatibility with synthetic and real matrices. First, an overview on the novel functionalized polymers and impregnated resins with good selectivity for the recovery of most valuable precious metals from synthetic leach solutions is given. Subsequently, the performances of these materials in the selective and preconcentrative recovery of Au, Ag, Pt, Pd and Rh from simulated and real leachates are discussed. The viability of an integrated approach for the determination of precious metals from simulated solutions by solid phase spectrometry is highlighted. The transposition of chelating polymers’ potential in challenging technologies for precious metal recovery-reuse-recycling needs further research on directions that are proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call