Abstract

Aerogels, as three-dimensional porous materials, have attracted much attention in almost every field owing to their unique structural properties. Designing high-entropy alloy aerogels (HEAAs) to quinary and above remains an enormous challenge due to the different reduction potentials and nucleation/growth kinetics of different constituent metals. Herein, a novel and universal chelating co-reduction strategy to prepare HEAAs at room temperature in the water phase is proposed. The addition of chelators (ethylenediaminetetraacetic acid tetrasodium salt, sodium citrate, salicylic acid, and 4,4'-bipyridine) with a certain strong coordination capacity can adjust the reduction potential of different metal components, which is the key to synthesize single-phase solid solution alloys successfully. The optimized AgRuPdAuPt HEAA can be an excellent electrocatalyst for hydrogen evolution reaction (HER) with an ultrasmall overpotential of 22 mV at 10 mA cm-2 and excellent stability for 24 h in an alkaline solution. In situ Raman spectroscopy unveils the enhanced hydrogen evolution reaction mechanism of HEAAs. Overall, this work provides a novel chelating co-reduction strategy for the facile and versatile synthesis and design of advanced HEAAs and broadens the development and utilization of multi-elemental alloy electrocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call