Abstract

Quantum chemical calculations were performed on model systems of stacking interactions between the acac type chelate rings of nickel, palladium, and platinum. CCSD(T)/CBS calculations showed that chelate-chelate stacking interactions are significantly stronger than chelate-aryl and aryl-aryl stacking interactions. Interaction energy surfaces were calculated at the LC-ωPBE-D3BJ/aug-cc-pVDZ level, which gives energies in good agreement with CCSD(T)/CBS. The stacking of chelates in an antiparallel orientation is stronger than the stacking in a parallel orientation, which is in agreement with the larger number of antiparallel stacked chelates in crystal structures from the Cambridge Structural Database. The strongest antiparallel chelate-chelate stacking interaction is formed between two platinum chelates, with a CCSD(T)/CBS interaction energy of -9.70 kcal mol-1, while the strongest stacking between two palladium chelates and two nickel chelates has CCSD(T)/CBS energies of -9.21 kcal mol-1 and -9.50 kcal mol-1, respectively. The strongest parallel chelate-chelate stacking was found for palladium chelates, with a LC-ωPBE-D3BJ/aug-cc-pVDZ energy of -6.51 kcal mol-1. The geometries of the potential surface minima are not the same for the three metals. The geometries of the minima are governed by electrostatic interactions, which are the ones determining the positions of the energy minima. Electrostatic interactions are governed by different electrostatic potentials above the metals, which are very positive for nickel, slightly positive for palladium, and slightly negative for platinum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.