Abstract

We report the case of a breast cancer survivor, diagnosed with an underlying CHEK2 c.1100delC heterozygosity, who developed a papillary thyroid cancer 5 years later. A CHEK2 c.1100delC (likely) pathogenic variant is associated with an increased risk of breast, prostate and colorectal cancer and therefore risk-specific screening will be offered. Current national and international screening guidelines do not recommend routine screening for thyroid cancer. Hence, we reviewed the literature to explore the possible association between a CHEK2 mutation and thyroid cancer. A weak association was found between the various CHEK2 mutations and papillary thyroid cancer. The evidence for an association with CHEK2 c.1100delC in particular is the least robust. In conclusion, there is insufficient evidence to warrant systematic thyroid screening in CHEK2 carriers.

Highlights

  • Case presentation In 2014, our patient was diagnosed with cancer of the left breast at the age of 35

  • The evidence of a possible association between CHEK2 mutations and papillary thyroid cancer is derived from 5 different types of studies: Fig. 4 Search Strategy Diagram

  • Incidence of papillary thyroid cancer in CHEK2 c.1100delC mutation carriers versus non-carriers The Copenhagen retrospective cohort study reported the incidence of different types of cancer in a cohort of 670 carriers of a heterozygous CHEK2 c.1100delC mutation in comparison to a cohort of 86.305 non-carriers

Read more

Summary

Introduction

Case presentation In 2014, our patient was diagnosed with cancer of the left breast at the age of 35. She was treated with a mastectomy accompanied by an axillary lymph node dissection, following a positive sentinel node biopsy. Additional pathological characteristics revealed a ki of 10%, a positive hormone receptor status and no HER2Neu amplification. She received adjuvant chemotherapy, radiotherapy and 5 years of tamoxifen in combination with a LHRH agonist. CHEK 2 phosphorylates BRCA1, modulating its function towards homologous recombination DNA repair, as well as several other regulators. As such CHEK2 is a member of the homologous recombination genes involved in the DNA repair pathway [1,2,3]. (Fig. 2)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call