Abstract

Restart-oriented concurrency control (CC) methods, such as optimistic CC, outperform blocking-oriented methods, such as standard two-phase locking in a high data contention environment, but this is at the cost of wasted processing due to restarts. Volatile savepoints are considered in this study as a method to reduce this wasted processing and to improve response time. There is the usual tradeoff between the checkpointing overhead and the wasted processing when a transaction is restarted. Our study shows that in a system where objects are accessed and updated uniformly during the lifetime of transactions, significant improvement in performance at high data conflict levels are attainable only when the checkpointing cost is low. This implies few optimally placed checkpoints per transaction. It is observed that checkpointing may result in a significant improvement in performance when access to database hot-spots are deferred to the final steps of transaction execution. The parametric studies reported in this paper are facilitated by closed-form analytic solutions expressing system performance, as well as an iterative solution which takes into account hardware resource contention in addition to data contention. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.