Abstract

Aneuploidy is a common feature of tumours that arise by errors in chromosome segregation during mitosis. The aim of this study was to evaluate possible signaling pathways involved in sensitization to chemotherapy in cells with chromosomal instability. We designed a screen using the fission yeast Squizossaccharomyces pombe, to isolate strains showing a phenotype of chromosome mis-segregation and higher sensitivity to the antitumoral drug Bleomycin. We examined differences in gene expression using a comparative analysis of genome-wide expression of the wild type strain and one of the mutants. The results revealed a set of genes involved in cell cycle control, including Mad3/BubR1 and Chk1. We then studied the levels of these two proteins in colorectal cancer human cell lines with different genomic content. Among these, SW620 cells showed higher BubR1 and Chk1 mRNA levels than control cells under normal conditions. Since Chk1 is required for both S and G2/M checkpoints, and the microtubule-destabilizing agent, nocodazole induces mitotic arrest, we attempted to investigate the potential anticancer effects of nocodazole in combination with cisplatin. These studies showed that SW620 cells undergo synergistic cell death after spindle checkpoint activation followed by cisplatin treatment, suggesting a role of Chk1 in this checkpoint, very likely dependent on BubR1 protein. Importantly, Chk1-depleted SW620 cells lost this synergistic effect. In summary, we propose that Chk1 could be a biomarker predictive of the efficacy of chemotherapy across different types of tumors with aneuploidy. These findings may be potentially very useful for the stratification of patients for treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.