Abstract

Multiple genome maintenance processes are coordinated at the replication fork to preserve genomic integrity. How eukaryotic cells accomplish such a coordination is unknown. Swi1 and Swi3 form the replication fork protection complex and are involved in various processes including stabilization of replication forks, activation of the Cds1 checkpoint kinase and establishment of sister chromatid cohesion in fission yeast. However, the mechanisms by which the Swi1–Swi3 complex achieves and coordinates these tasks are not well understood. Here, we describe the identification of separation-of-function mutants of Swi3, aimed at dissecting the molecular pathways that require Swi1–Swi3. Unlike swi3 deletion mutants, the separation-of-function mutants were not sensitive to agents that stall replication forks. However, they were highly sensitive to camptothecin that induces replication fork breakage. In addition, these mutants were defective in replication fork regeneration and sister chromatid cohesion. Interestingly, unlike swi3-deleted cell, the separation-of-functions mutants were proficient in the activation of the replication checkpoint, but their fork regeneration defects were more severe than those of checkpoint mutants including cds1Δ, chk1Δ and rad3Δ. These results suggest that, while Swi3 mediates full activation of the replication checkpoint in response to stalled replication forks, Swi3 activates a checkpoint-independent pathway to facilitate recovery of collapsed replication forks and the establishment of sister chromatid cohesion. Thus, our separation-of-function alleles provide new insight into understanding the multiple roles of Swi1-Swi3 in fork protection during DNA replication, and into understanding how replication forks are maintained in response to different genotoxic agents.

Highlights

  • A variety of agents, including environmental toxins or drugs, can cause DNA damage and lead to arrest of DNA replication forks

  • This checkpoint is activated by impeded replication forks and arrests the cell cycle while reducing the rate of DNA synthesis in order to coordinate with DNA repair and preserve genomic integrity [4,5,6]

  • In our previous studies concerning the mechanisms of the replication checkpoint, we found that Swi1 is required for proper activation of Cds1 in response to HU and for stabilization of replication forks in fission yeast [19]

Read more

Summary

Introduction

A variety of agents, including environmental toxins or drugs, can cause DNA damage and lead to arrest of DNA replication forks. Arrested forks are among the most serious threats to genomic integrity because they can collapse, break, or rearrange [1,2,3] To circumvent these problems, cells are equipped with a DNA replication stress response pathway, termed the DNA replication checkpoint or the S-phase checkpoint. Chk promotes the DNA damage checkpoint pathway while Cds acts as the master kinase for activation of the replication checkpoint to phosphorylate Cdc, thereby inhibiting the Cdc (Cdk1) kinase and facilitating DNA repair and recombination pathways [7,8,9,10,11,12,13] Another important function of the replication checkpoint is to stabilize replication forks by maintaining proper assembly of replisome components and preserving DNA structures when problems are encountered during DNA replication [14,15,16,17,18]. The precise molecular mechanisms by which stalled forks activate the replication checkpoint are not completely understood

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.