Abstract

Deoxyribonucleotide pools are maintained at levels that support efficient and yet accurate DNA replication and repair. Rad53 is part of a protein kinase regulatory cascade that, conceptually, promotes dNTP accumulation in four ways: (1) it activates the transcription of ribonucleotide reductase subunits by inhibiting the Crt1 repressor; (2) it plays a role in relocalization of ribonucleotide reductase subunits RNR2 and RNR4 from nucleus to cytoplasm; (3) it antagonizes the action of Sml1, a protein that binds and inhibits ribonucleotide reductase; and (4) it blocks cell-cycle progression in response to DNA damage, thus preventing dNTP consumption through replication forks. Although several lines of evidence support the above modes of Rad53 action, an effect of a rad53 mutation on dNTP levels has not been directly demonstrated. In fact, in a previous study, a rad53-11 mutation did not result in lower dNTP levels in asynchronous cells or in synchronized cells that entered the S-phase in the presence of the RNR inhibitor hydroxyurea. These anomalies prompted us to investigate whether the rad53-11 mutation affected dNTP levels in cells exposed to a DNA-damaging dose of ethylmethyl sulfonate (EMS). Although dNTP levels increased by 2- to 3-fold in EMS treated wild-type cells, rad53-11 cells showed no such change. Thus, the results indicate that Rad53 checkpoint function is not required for dNTP pool maintenance in normally growing cells, but is required for dNTP pool expansion in cells exposed to DNA-damaging agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.