Abstract

The article presents a technique for assessing the convergence of the results of calculations of the composite model of the part. The question of checking the convergence of calculation results in finite element analysis is a prerequisite for the analysis of a nonlinear calculation. The article provides a description of the difference between the nonlinear calculation and its features, relevant for the calculation of composite parts with surface contact of various materials. The part studied in the article is a composite one, consisting of a metal shell, hypothetically manufactured by metal addivitive printing and filled with a metal polymer. Thus, a part is examined that has contact of two materials with different propertios. NX Nastran SolidEdge ST10 is used as a solver. The article describes how the convergence check is implemented in the SolidEdge ST10 software environment. At the same time. Due to the peculiarities of SolidEdge ST10, The convergence assessment in this example was carried out by successively varying the size of the element mesh. Among the analyzed calculated data, the parameters of the safety factor, deformations and stresses were used. The calculation results were systematized and presented in the form of appropriate graphs. An assessment is made of the infiuence of the finite element mesh size on the accuracy of the results obtained and the advisability of using a finite element mesh with the optimal size. The optimality criterion was to use such a finite element mesh size that would allow obtaining adequate calculation results with the most efiicient use of the computer resource. In conclusion, the recommendations for using the proposed methodology for use by design engineers in the development of composite and other part designs in nonlinear analysis are described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call