Abstract
Checking the coherence of a set of rules is an important step in knowledge base validation. Coherence is also needed in the field of fuzzy systems. Indeed, rules are often used regardless of their semantics, and it sometimes leads to sets of rules that make no sense. Avoiding redundancy is also of interest in real-time systems for which the inference engine is time consuming. A knowledge base is potentially inconsistent or incoherent if there exists a piece of input data that respects integrity constraints and that leads to logical inconsistency when added to the knowledge base. We more particularly consider knowledge bases composed of parallel fuzzy rules. Then, coherence means that the projection on the input variables of the conjunctive combination of the possibility distributions representing the fuzzy rules leaves these variables completely unrestricted (i.e., any value for these variables is possible) or, at least, not more restrictive than integrity constraints. Fuzzy rule representations can be implication-based or conjunction-based; we show that only implication-based models may lead to coherence problems. However, unlike conjunction-based models, they allow to design coherence checking processes. Some conditions that a set of parallel rules has to satisfy in order to avoid inconsistency problems are given for certainty or gradual rules. The problem of redundancy, which is also of interest for fuzzy knowledge bases validation, is addressed for these two kinds of rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.