Abstract

Semiparametric transformation models provide a very general framework for studying the effects of (possibly time-dependent) covariates on survival time and recurrent event times. Assessing the adequacy of these models is an important task because model misspecification affects the validity of inference and the accuracy of prediction. In this paper, we introduce appropriate time-dependent residuals for these models and consider the cumulative sums of the residuals. Under the assumed model, the cumulative sum processes converge weakly to zero-mean Gaussian processes whose distributions can be approximated through Monte Carlo simulation. These results enable one to assess, both graphically and numerically, how unusual the observed residual patterns are in reference to their null distributions. The residual patterns can also be used to determine the nature of model misspecification. Extensive simulation studies demonstrate that the proposed methods perform well in practical situations. Three medical studies are provided for illustrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.