Abstract

ABSTRACTTo build a linear mixed effects model, one needs to specify the random effects and often the associated parametrized covariance matrix structure. Inappropriate specification of the structures can result in the covariance parameters of the model not identifiable. Non-identifiability can result in extraordinary wide confidence intervals, and unreliable parameter inference. Sometimes software produces implication of model non-identifiability, but not always. In the simulation of fitting non-identifiable models we tried, about half of the times the software output did not look abnormal. We derive necessary and sufficient conditions of covariance parameters identifiability which does not require any prior model fitting. The results are easy to implement and are applicable to commonly used covariance matrix structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.