Abstract
We study approximative and geometric properties of Chebyshev sets composed of at most countably many planes (i.e., closed affine subspaces). We will assume that the union of planes is irreducible, i.e., no plane in this union contains another plane from the union. We show, in particular, that if a Chebyshev subset M of a Banach space X consists of at least two planes, then it is not B-connected (i.e., its intersection with some closed ball is disconnected) and is not B̊-complete. We also verify that, in reflexive (CLUR)-spaces (and, in particularly, in complete uniformly convex spaces), a set composed of countably many planes is not a Chebyshev set. For finite unions, we show that any finite union of planes (involving at least two planes) is not a Chebyshev set for any norm on the space. Several applications of our results in the spaces C(Q), L1 and L∞ are also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.