Abstract

The Chebyshev tau method is examined in detail for a variety of eigenvalue problems arising in hydrodynamic stability studies, particularly those of Orr-Sommerfeld type. We concentrate on determining the whole of the top end of the spectrum in parameter ranges beyond those often explored. The method employing a Chebyshev representation of the fourth derivative operator, D 4, is compared with those involving the second and first derivative operators, D 2 and D, respectively. The latter two representations require use of the QZ algorithm in the resolution of the singular generalised matrix eigenvalue problem which arises. Physical problems explored are those of Poiseuille flow, Couette flow, pressure gradient driven circular pipe flow, and Couette and Poiseuille problems for two viscous, immiscible fluids, one overlying the other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.